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Abstract 
Background: Accurate blood cell classification is essential for diagnosing and 
monitoring blood disorders. Manual blood evaluation is cumbersome and 
subject to disagreement among specialists, which can negatively impact 
diagnostic reliability. 
Objectives: This study aims to develop an automated deep learning 
framework for accurate classification of major blood cell types, especially 
basophils, red blood cells, and bone marrow cells, to enhance the accuracy and 
efficiency of clinical diagnosis. 
Patients and Methods: A set of publicly available, high-resolution blood 
smear images obtained from a specific patient cohort with distinct genetic 
properties was analyzed, with standardized preprocessing applied to address 
variance. Multiple AI-based classification strategies were developed, and all 
models were evaluated on an independent test set using overall accuracy, 
precision, recall, and F1 score. 
Results: Wavelet scattering combined with an SVM delivered the strongest 
overall performance, surpassing both the custom CNN and ResNet variants. It 
achieved a near-perfect separation of basophils and erythroblasts and only 
occasional confusion with myeloblasts. These results highlight the sensitivity 
of the wavelet scattering method to subtle morphological differences in blood 
cells. 
Conclusion: This study highlights how machine learning-based image 
analysis techniques can reliably and accurately classify blood cells, reducing 
the need for the subjective manual interpretation that characterizes traditional 
microscopy. There is potential for increasing the accuracy of early diagnosis 
and simplifying patient treatment plans for hematological disorders by 
integrating these automated systems into standard clinical practice. 
Keywords: Hematological Diagnostics, Blood Cell Classification, 
Wavelet Scattering Transform, Transfer Learning. 

Introduction 
The diagnosis and treatment of blood disorders, such as leukemia and bone marrow dysplasia, rely on 
blood cell classification; however, traditional microscopic examination remains time-consuming and 
subject to interdisciplinary variation. Advanced artificial intelligence and image processing 
techniques can overcome these limitations by providing objective and reproducible analyses of 
cellular characteristics, enabling early detection of subtle morphological changes, and helping guide 
individual treatment decisions. To demonstrate better outcomes, accuracy and consistency than 

OPEN ACCESS 

https://djm.uodiyala.edu.iq/index.php/djm/article/view/1463/version/1436
mailto:a97s21@uomustansiriyah.edu.iq
https://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://djm.uodiyala.edu.iq/index.php/djm
https://orcid.org/0000-0003-2946-6747
https://orcid.org/0009-0004-1486-3605
https://orcid.org/0000-0001-5709-2549


ORIGINAL RESEARCH 
Published: 25 October 2025  
DOI: 10.26505/djm.v29i1.1463 Diyala Journal of Medicine 

60 October 2025, Volume 29, Issue 1 

 

 

traditional microscopy, we create and validate an 
AI-driven framework in this study for the 
automated classification of basophils, 
erythroblasts, and myeloblasts in high-resolution 
blood smear images (1-3). 
Deep learning frameworks and sophisticated 
computational techniques have emerged as 
potent remedies for these problems in recent 
years (4). For various tasks in biomedical image 
analysis, CNNs, transfer learning frameworks, 
and autoencoder-based cascades have been 
widely utilized (5-8). These methodologies have 
achieved high precision in recognizing the 
populations of various leukocytes, providing 
more objective and reproducible alternatives to 
manual methods. Even with these advances, the 
classification of basophils, erythroblasts, and 
myeloblasts remains challenging because their 
histological features are very delicate, as there are 
no comprehensive, properly cataloged data sets 
(9-16). Consequently, a successful computerized 
classification scheme would significantly 
enhance diagnostic precision, ultimately leading 
to earlier diagnosis and more targeted therapies 
(17-20). 
This work primarily aims to address this 
shortcoming by developing and validating a 
custom-designed deep learning algorithm for 
classifying basophils, erythroblasts, and 
myeloblasts from microscopic images. By 
embracing the latest image processing 
methodologies and advanced neural network 
designs, the strategy aims to minimize 
subjectivity in morphological evaluation and 
enhance consistency during cell classification. In 
the process, we confront the specific challenges 
related to these cells while building upon the 
promising results from the most recent studies. 
Following this introductory section, the paper 
proceeds as outlined below. 
First, a comprehensive review of related work is 
provided, summarizing current methodologies 
and their inherent limitations. Next, the proposed 

methodology, including the network design and 
data augmentation strategies employed to address 
data scarcity and morphological overlap, is 
described in detail. Finally, we present 
experimental results that validate the 
effectiveness of our approach and discuss the 
potential implications for clinical hematological 
diagnostics and future research directions. 
Arabyarmohammadi et al. (2022) trained a deep 
model to segment myeloblast chromatin and 
extracted 214 texture/shape features. After 
LASSO and Cox regression refinement, their risk 
score correlated with relapse-free survival (AUC 
0.71) in AML and MDS post-transplant patients, 
demonstrating a reproducible alternative to 
manual cytology (21). In addition, Guo et al. 
(2022) developed a deep classifier with a 
“rejected option” to flag ambiguous bone marrow 
images. By quantitatively measuring 
morphological features, the system abstains from 
uncertain cases, reducing misclassification and 
directing them to expert review (22). Jarjees et al. 
(2022) developed a VGG-19 transfer-learning 
pipeline using an augmented dataset comprising 
seven blood cell classes. Their CNN achieved 98 
% overall accuracy, standardizing leukocyte 
classification and minimizing dependence on 
expert interpretation (23).Tarquino et al. (2023) 
introduced a cascade of one-class variational 
autoencoders to distinguish four pathological 
bone marrow subtypes. Trained on 26,000 open-
access images, the model achieved 93.8% 
accuracy, outperforming benchmarks for 
ResNext, ResNet-50, Xception, and CoAtNet 
(24). Consensus criteria for acute and chronic 
basophilic leukemias were established, defining 
“hyperbasophilia” (≥1,000 basophils/μL) and 
standardizing diagnoses to enhance clinical 
reproducibility across  hematologic malignancies 
(25). A CNN with specialized layers and data 
augmentation was designed to detect AML in 
high-resolution images. The system delivered 
high accuracy and reliability, demonstrating 
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versatility for other overlapping cell types and 
accelerating diagnostic workflows (26). 

 
Patients and Methods 
Dataset description: A portion of a publicly 
available Kaggle dataset was utilized in this 
study. The dataset comprises 5,000 high-
resolution microscopic blood cell images evenly 
distributed across five classes (1,000 images per 
class) from different countries. Each image 
meets the following technical specifications: 

minimum resolution of 1024×1024 pixels, 
Wright-Giemsa staining, acquisition at 
100× oil immersion (equivalent to 1000× 
total magnification), 24-bit RGB color, 
and multiple focal planes per sample. 
Given the computational demands 
associated with training AI algorithms on 
such high-resolution data, only a subset of 
the dataset was employed for training, 
specifically, three classes with 100 images 
per class. A portion of the dataset is 
depicted in Figure 1. 

 
Figure 1. Samples of the dataset: (a) Basophil cells; (b) Erythroblast; and (c) Myeloblast. 

 
Data preparation: The study employed a 
publicly available dataset of blood smear 
images. The original dataset was provided as 
a compressed archive (e.g., 
BloodSmearImages.zip) and was extracted to 
a designated working directory. The images 
are in RGB format with a common size of 
1024×1024 pixels, which leads to resizing 
the images to 400×400 pixels. To facilitate 
data management and ensure proper labeling, 
an Image Datastore was created; labels were 
automatically assigned based on the folder 

names. The dataset comprises 100 images 
uniformly distributed across three classes 
corresponding to specific parasitic infections 
(basophil, erythroblast, and myeloblast), with 100 
images per class. 
To ensure balanced class representation, the dataset 
was split into training and hold-out (test) sets using a 
70:30 ratio. Randomization was controlled via a 
fixed random seed to guarantee reproducibility. The 
entire set of training and test images was loaded into 
memory, which permitted rapid access during 
feature extraction and classifier training. 
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Feature extraction using wavelet scattering 
technique: Accurate feature extraction is 
crucial due to the dataset's small size and 
diversity. To address this challenge, a two-
layer wavelet dispersion transform was 
applied to extract low-contrast, translation-
invariant feature descriptors from high-
resolution images. The network was designed 
to accommodate input images of 400 × 400 
pixels, with a 40-pixel invariance scale 
selected to ensure robustness against subtle 
translational shifts and shape distortions. Two 
wavelets per octave were used in the first 
dispersion layer to capture fine details. In 
contrast, one wavelet per octave was 
employed in the second layer to downscale the 
resolution hierarchically. To enable the model 
to adapt to angular variations in cellular 
structures, two rotational transforms were 
incorporated into each dispersion layer to 
account for orientation diversity. The outcome 
of these stages is a robust set of dispersion 
parameters, including successive wavelet 
convolutions, nonlinear parameter 
transformations, and local averaging via low-
pass filtering. These parameters serve as high-
level discriminative representations that 
enhance the model's ability to distinguish 
between normal and pathological cell types, 
even in images exhibiting subtle variations 
that complicate discrimination. 
Classification using support vector 
machine (SVM): Following feature 
extraction, the scattering coefficients were 
used as inputs to a Support Vector Machine 
(SVM) classifier. Recognized for their 
effectiveness in high-dimensional spaces and 
limited-sample scenarios, SVMs were chosen 
to robustly discriminate among the classes. In 
our implementation, a multiclass SVM was 
constructed using the one-vs-all strategy (or 
error-correcting output codes) to generalize 
the binary decision-making process inherent 

in SVMs to a multiclass classification problem. 
Hyperparameters for the SVM, including the choice 
of kernel (e.g., linear or radial basis function), 
regularization parameters, and other tuning 
parameters, were optimized using cross-validation 
on the training set. This approach ensured that the 
classifier maintained high generalizability and 
minimized the risk of overfitting. The classifier’s 
performance was subsequently assessed on the 
reserved test set using standard metrics, including 
accuracy, precision, recall, and F1-score. Table 1 
shows the hyperparameters of the SVM algorithm. 

 
Table 1. Properties of the Wavelet feature extraction method. 

Parameter value 

KernelFunction cubic polynomial kernel 

PolynomialOrder 3 

KernelScale 1 

BoxConstraint 314 

Standardize True 

KFold 5 

 
Deep convolutional neural network: The results of 
the Water sorption of the zirconium mixed with PVA 
decreased in the study group compared to the control 
group, as shown in Table 2.  It was demonstrated that 
water sorption results show 
a significant difference in the study group at all 
curing times (1-2-5-10-15-20 sec), while showing a 
non-significant difference in the control group at all 
curing time intervals. 
Deep convolutional neural network: The custom 
Convolutional Deep Network is engineered to learn 
discriminative features directly from input images by 
employing a structured architecture that begins with 
an input layer where images are resized to a fixed 
resolution (e.g., 300×300 pixels) and accepted in 24-
bit RGB format. The network then utilizes a series of 
convolutional blocks for feature extraction; each 
block typically comprises a convolutional layer with 
small receptive fields (such as 3×3 filters) to scan the 
input feature maps, followed by batch normalization 
layers to stabilize and accelerate training, ReLU 
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activation functions to introduce non-linearity, 
and max pooling layers to down sample the 
feature maps- thereby reducing spatial 
dimensions and capturing translational 
invariance. After several such blocks, a global 
average pooling layer aggregates these high-
level features, summarizing the learned spatial 
representations into a fixed-length feature 
vector. This vector is further processed 

through one or two fully connected dense layers that 
incorporate dropout to prevent overfitting, given the 
high capacity of the network relative to the dataset 
size. Finally, the architecture culminates in a fully 
connected SoftMax output layer, which maps the 
refined features to class probabilities corresponding 
to the various blood cell categories. 

 
                                         Table 2. Architecture of the custom deep CNN. 

Layer (type) Output Shape Number of parameters 
conv2d_4 (Conv2D) (None, 400, 400, 16) 2368 

batch_normalization_4 (None, 400, 400, 16) 64 
re_lu_4 (ReLU) (None, 400, 400, 16) 0 

conv2d_5 (Conv2D) (None, 400, 400, 20) 2900 
batch_normalization_5 (Batch) (None, 400, 400, 20) 80 

re_lu_5 (ReLU) (None, 400, 400, 20) 0 
max_pooling2d_2 (MaxPooling2) (None, 100, 100, 20) 0 

flatten_2 (Flatten) (None, 200000) 0 
dense_2 (Dense) (None, 3) 600003 

softmax_2 (Softmax) (None, 3) 0 
Total params: 605415, Trainable params: 605343, Non-trainable params: 72 

 
The network was trained using stochastic 
gradient descent (or an alternative optimizer 
such as Adam) with appropriate learning rate 
scheduling and weight regularization (e.g., L2 
weight decay). Hyperparameters, including 
mini-batch size, learning rate, dropout ratio, 
and number of epochs, were empirically set, 
followed by cross-validation to ensure robust 
performance and mitigate overfitting. Data 
augmentation techniques (e.g., rotation, 
scaling, or flipping) were applied during 
training to expand the effective dataset and 
further enhance the model’s generalization. 
ResNet network: ResNet, or Residual 
Network, is a highly effective deep learning 
model known for its ability to train very deep 
neural networks by addressing the vanishing 
gradient problem through skip connections. In 
our work, we used a pretrained version of 
ResNet, specifically ResNet-50, because of its 
strong performance in image classification 

tasks. The core idea behind ResNet lies in its residual 
blocks, which include shortcut connections (also 
called identity mappings) that skip over one or more 
layers. These connections allow the network to learn 
residual functions relative to the input, making it 
easier to train deeper models by reducing the 
degradation problem. 
Stacking multiple residual blocks can enable the 
network to obtain high-level representations from 
low-level textures progressively. This functionality 
is very effective for recognizing faint blood cell 
morphology cues. Transfer learning was used to 
allow the pretrained ResNet model to learn blood cell 
classification. It allowed us to leverage strong 
feature representations learned on the vast ImageNet 
dataset. Early layers of the network extract general 
visual features that are widely applicable, so we left 
most of them unchanged. 
For a certain number of classes in the dataset, we 
replaced the classification layer with a different fully 
connected softmax layer, and we then adjusted the 
learning rate. By doing this, it was able to stay close 
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to the original and preserve only limited, yet 
significant, modifications introduced by the 
model's retraining for the particular domain. 
To enhance the model's resilience and 
generalization capabilities, we also employed 
regularization and data augmentation 
techniques. This led to the development of a 
functional and precise blood type 
classification system. 
Evaluation: To conduct a comprehensive 
performance comparison of the methods 
adopted in this study, we ran each technique 
on a hold-out test dataset comprising 30% of 
the entire dataset. To evaluate the developed 
model, we used accuracy, precision, recall, 
and F1-score classification metrics. We 
computed each metric for each class and then 
averaged it with the macro average across all 
classes to obtain an overall assessment of the 
model's performance across all classes. 
For reference: 
• True Positives (TP): The number of samples 
correctly predicted as belonging to a given 
class. 
• False Positives (FP): The number of samples 
incorrectly predicted to belong to the class. 
• True Negatives (TN): The number of 
samples correctly identified as not belonging 
to the class. 
• False Negatives (FN): The number of 
samples that were actually in the class but 
were misclassified as something else. 
The evaluation metrics were computed using 
the following equations: 
 
- Accuracy measures the proportion of all 
correct predictions (24):  

Accuracy =
TP + TN

TP + TN + FP + FN
 

 
 

- Precision (P) quantifies the correctness of 
positive predictions for a class (27): 

𝑃𝑃 =
TP

TP + FP
 

 
- Recall (R) measures the ability of the model to 
capture all actual positive instances (27): 

𝑅𝑅 =
TP

TP + FN
 

 
- F1‑Score is the harmonic mean of precision and 
recall, providing a balanced measure (27):  

𝐹𝐹1 = 2 ×
𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅

 

 
A confusion matrix was constructed during the 
qualitative analysis to assess the performance of the 
models in each category, which helps identify 
patterns of misclassification and highlights areas that 
require improvement in each model. 
Results 
Study design: 
Both models were implemented in MATLAB. The 
custom network was constructed using the deep 
learning primitives available in the MATLAB Deep 
Learning Toolbox, while the pretrained ResNet 
model was adapted using MATLAB’s transfer 
learning capabilities. The environment facilitated 
rapid prototyping, hyperparameter exploration, and 
performance evaluation using standard metrics such 
as accuracy, precision, recall, and F1-score. 
Classification via wavelet scattering features 
using SVM: Figure 2 shows the confusion matrix 
obtained from the wavelet scattering feature 
extraction and SVM classification approach, which 
reveals an overall high performance in 
discriminating blood cell types. For the three classes 
under investigation- basophils, erythroblasts, and 
myeloblasts- the classifier achieved near-perfect 
accuracy. Specifically, both basophils and 
erythroblasts were classified with 100% accuracy, 
indicating that the scattering coefficients extracted 
from these cell images capture their distinctive 
morphological features very effectively. 
Myeloblasts, while also largely well-classified with 
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29 out of 30 instances correctly identified, 
exhibited a single misclassification 
(incorrectly labeled as an erythroblast), 

resulting in a slight reduction in metrics such as 
recall and F1‑score for this class. 

 
                    Figure 2. Confusion chart of Wavelet features using SVM. 

 
The excellent performance for basophils and 
erythroblasts suggests that the wavelet 
scattering transform is successful in deriving 
translation-invariant and discriminative 
features that robustly represent the 
morphological characteristics of these cells. 
The minor overlap observed between 
myeloblasts and erythroblasts, however, 
implies that in certain cases, the feature space 
representations of these two cell types may 
become similar. Such subtle overlaps are not 
entirely unexpected, given the inherent 
complexity in distinguishing cells that share 
comparable structural and textural attributes. 
The SVM classifier, when provided with these 
high-quality features, demonstrates effective 
discrimination across classes. Its decision 
boundaries appear to be well-calibrated, as 
evidenced by the high class-wise accuracies. 
However, the misclassification of one 
myeloblast highlights a potential area for 

further refinement. Future work could explore more 
sophisticated feature fusion techniques that integrate 
additional descriptors (e.g., color histograms or 
morphological measurements) into the classification 
pipeline, or consider threshold adjustments and 
ensemble learning methods to more reliably resolve 
borderline cases. 
Classification via deep CNN: The training of the 
deep CNN model was characterized by steady 
improvements in both accuracy and loss over 
successive epochs, as illustrated in Figure 3. Initially, 
the model achieved around 60% accuracy, and 
within several epochs, it rapidly improved, 
eventually stabilizing between 90% and 100%. 
Concurrently, the training loss started from a high 
value (approximately 9) and consistently decreased 
toward near-zero levels, reflecting effective 
optimization of network weights and a substantial 
reduction in the difference between predicted outputs 
and true labels. 
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                                                                         Figure 3. Training process of the deep CNN. 

 
The network was trained for a total of 100 
epochs, encompassing approximately 2100 
iterations. A constant learning rate of 0.0001 
was chosen, which contributed to the stable 
convergence observed, as it ensured gradual 
weight adjustments without causing erratic 
behavior in the loss or accuracy metrics. 
Notably, the training was executed on a single 
CPU, which may indicate either the modest 
scale of the dataset or a scenario where high-
end GPUs were not available. Despite these 
hardware constraints, the learning curves 
demonstrate that the model was able to 
effectively capture the morphological nuances 
in the blood cell images. 
While minor fluctuations in training accuracy 
are common in mini-batch gradient descent 
due to inherent stochasticity, the overall 
upward trend in accuracy and the 
corresponding decline in loss confirm the 
model’s ability to learn relevant features. The 
training process was allowed to complete all 
100 epochs, reaching a point of convergence 
where the loss stabilized and the accuracy 
plateaued, without the implementation of 
early stopping mechanisms. 

The confusion matrix for the deep CNN model 
reveals near-perfect classification performance 
overall, with 100% accuracy for both basophils and 
myeloblasts. In comparison, erythroblasts show a 
slightly lower accuracy of 86.7% (26 out of 30 
correctly classified, with 4 misclassified as 
basophils), as illustrated by Figure 4. When 
normalized by true class, basophils and myeloblasts 
maintain perfect recognition. In contrast, the row-
wise accuracy for erythroblasts indicates that a small 
subset is misinterpreted, likely due to subtle 
morphological similarities to basophils, despite their 
distinctive features. Analysis of column-wise 
normalization shows that approximately 88.2% of 
samples predicted as basophils are indeed basophils, 
with the remainder being erythroblasts, underscoring 
a slight overlap in the feature space between these 
two classes. These observations suggest that while 
the deep CNN effectively distinguishes the majority 
of blood cell types, there remains an opportunity for 
further refinement, potentially through enhanced 
feature engineering, increased data augmentation, or 
additional model tuning to differentiate erythroblasts 
from basophils better and improve the overall 
robustness of the classifier in clinical diagnostics. 
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                                                                                        Figure 4. Confusion chart of the deep CNN. 

 
Classification via transfer learning using 
ResNet: The training process of the ResNet 
model was both robust and efficient, as 
demonstrated by the steady evolution of key 
performance metrics over 2100 iterations and 
100 epochs, as shown in Figure 5. Initially, the 
training accuracy rapidly increased from a 
moderate value, quickly approaching and then 
maintaining near 100% accuracy, indicating 
that the network’s residual connections were 
highly effective in facilitating deep feature 
extraction and mitigating the vanishing 
gradient problem. Concurrently, the training 
loss decreased sharply from an initial high 
value and plateaued at very low levels, with 
only minor fluctuations that are typical in 
mini-batch optimization. This convergence 
was achieved using a constant learning rate of 
0.0001, ensuring gradual yet consistent weight 
updates that contributed to the model’s stable 
performance over time. Notably, the entire 
training process was executed on a single 
CPU, suggesting an efficient use of 
computational resources despite the 
complexity of the ResNet architecture. 
Overall, the training results indicate that the 

The ResNet model successfully learned the 
underlying patterns in the data, as reflected in its high 
accuracy and low loss by the end of training, thereby 
affirming its potential for effective generalization to 
unseen samples. 
Figure 6 displays the confusion matrix for the 
ResNet model, indicating a high level of 
classification accuracy across the three blood cell 
categories. Specifically, basophils and myeloblasts 
are classified with 100% accuracy, while 
erythroblasts achieve a slightly lower accuracy of 
90%, with 3 out of 30 instances misclassified as 
basophils. This pattern suggests that although the 
deep architecture of ResNet effectively captures the 
discriminative features necessary for accurate 
classification, there exists a subtle overlap between 
the feature representations of erythroblasts and 
basophils. Such overlaps may be due to inherent 
morphological similarities in the texture or structure 
of the cells. Overall, these results attest to the 
robustness of the transfer learning approach using 
ResNet while also highlighting an opportunity for 
further refinement in distinguishing closely related 
cell types. 
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                                                                      Figure 5. Training process of the ResNet method. 

 
  

 
                                                                             Figure 6. Confusion chart of the ResNet method. 

 
Clinical integration and validation: To 
transition from a research prototype to a 
routine diagnostic tool, our AI framework 
must be embedded seamlessly within existing 
digital pathology infrastructures. In a typical 
laboratory workflow, blood smear slides 
scanned by high-throughput slide scanners 
will be automatically conveyed to the AI 
engine through the Laboratory Information 
System (LIS). The model’s cell‐type 
predictions-including confidence scores-will 
be overlaid on the digital‐pathology viewer, 
enabling pathologists to visualize AI 
annotations alongside their manual 
assessments. This integration minimizes 

additional workflow steps and ensures that AI 
outputs augment, rather than disrupt, established 
diagnostic practices. 
Effective adoption also hinges on user training and 
feedback mechanisms. Laboratory staff will 
participate in structured workshops and e-learning 
modules to learn how to interpret AI annotations, 
manage low‐confidence or “rejected” outputs, and 
reconcile discrepancies between model predictions 
and expert opinions. Regular feedback sessions will 
capture user experiences and inform iterative 
refinements of both the AI model and the user 
interface, ensuring that the system evolves in 
alignment with clinical needs. 
Finally, safeguarding patient data and ensuring long‐ 
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term performance stability is paramount. All 
image transfers will adhere to HIPAA and 
GDPR standards, employing end-to-end 
encryption and de-identification protocols. 
Post-deployment, a continuous monitoring 
framework will track metrics such as false-
positive and false-negative rates, model drift, 
and override frequencies. These indicators 
will trigger scheduled retraining with newly 
annotated cases, guaranteeing that the AI 
system maintains its accuracy and reliability 
over time. 
 
Discussion 
Our findings demonstrate that all three 
approaches-wavelet scattering with SVM, 
custom deep CNN, and ResNet transfer 
learning-achieved strong performance in 
distinguishing between basophils, 
erythroblasts, and myeloblasts. However, 
important performance differences emerged 
among the methods. The wavelet scattering 
with the SVM approach achieved the highest 
overall accuracy (~98.9%), with perfect 
classification of basophils and erythroblasts 
and only a single misclassification among 
myeloblasts. The deep CNN achieved 95.6% 
overall accuracy, with slightly reduced 
performance for erythroblasts (86.7%), while 
the ResNet model performed between the two 
methods, reaching 96.7% accuracy with 90% 
correct classification of erythroblasts. These 
differences highlight that while deep learning 
architectures are effective, handcrafted feature 
extraction using wavelet scattering remains 
highly competitive in scenarios with limited 
datasets. 
Comparing these results with prior studies 
underscores their significance. Jarjees et al. 
(23) reported 98% accuracy using a VGG-19 
transfer learning pipeline for leukocyte 
classification, which is comparable to our 

ResNet model but slightly lower than the wavelet 
scattering + SVM approach. Similarly, Khanam et al. 
(26)  demonstrated high performance of CNNs in 
acute myeloid leukemia detection, yet their work 
also noted challenges in separating morphologically 
similar cell types-a limitation mirrored in our 
misclassifications between erythroblasts and 
basophils. Tarquino et al. (24) achieved 93.8% 
accuracy with a variational autoencoder cascade for 
bone marrow cell classification, which is lower than 
all three methods in our study. This indicates that 
both conventional machine learning (wavelet 
scattering + SVM) and transfer learning approaches 
are advantageous for small, specialized datasets. 
Other investigations have also confirmed the 
challenge of differentiating morphologically 
overlapping cells. Arabyarmohammadi et al. (21) 
utilized texture-based deep models to stratify 
myeloblasts in AML and MDS, reporting strong 
prognostic accuracy while also highlighting issues 
with feature overlap. Likewise, Guo et al. (22) 
proposed a rejection-based classifier for bone 
marrow cells to handle ambiguous cases, which 
aligns with our observation that a small subset of 
erythroblasts was misclassified as basophils. 

Our results, therefore, support the notion that robust, 
handcrafted descriptors, such as wavelet scattering 
coefficients, outperform deep CNNs and even 
transfer learning models when dataset size is 
constrained, as they capture subtle morphological 
patterns without requiring massive annotated 
datasets (28). At the same time, the promising results 
of ResNet (96.7% accuracy) suggest that deep 
hierarchical feature extraction can achieve reliable 
performance and may surpass handcrafted features 
when larger datasets and additional augmentation 
strategies are available. 

Taken together, this study contributes to the growing 
evidence that AI-driven image analysis can enhance 
hematological diagnostics by providing high 
accuracy and reducing inter-observer variability. 
While some misclassifications remain, particularly 
between erythroblasts and basophils, our  
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comparative analysis shows that integrating 
wavelet-based descriptors with traditional 
classifiers remains a viable and powerful 
approach. Future work should investigate 
hybrid feature fusion strategies, as well as 
enriched datasets, to further improve 
erythroblast recognition and achieve robust, 
clinically deployable diagnostic support 
systems. 
Conclusion 
Our findings demonstrate that AI can 
effectively automate blood cell classification, 
reducing the subjectivity of manual 
microscopy. All three models-wavelet 
scattering with SVM, a custom CNN, and 
ResNet-achieved high accuracy (>95%), with 
the wavelet-SVM combination performing 
best (~98.9%). However, a limitation of this 
study is the genetic properties of our dataset, 
which differs from others and may impact 
model generalizability. Future research should 
expand datasets and incorporate genetic 
variability to strengthen clinical applicability. 
Despite this, our work confirms that AI-driven 
frameworks are promising tools for enhancing 
hematological diagnostics 
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 تصنیف وتنبؤ خلایا الدم البشریة باستخدام الذكاء الاصطناعي وتقنیات معالجة الصور المتقدمة
 ۱احمد سعید لطیف، ۲ احمد جبار محمد، ۱ محمد یوسف كامل

 

 لملخص ا
 یعد التصنیف الدقیق لخلایا الدم أمرًا بالغ الأھمیة لتشخیص وإدارة اضطرابات الدم. حیث أن التقییمات الیدویة التقلیدیة لمسحات الدم  الخلفیة:

 .تتطلب جھداً كبیرًا وتخضع للتباین بین المختصین، مما قد یھدد موثوقیة التشخیص
تھدف ھذه الدراسة إلى تطویر والتحقق من إطار عمل آلي یعتمد على التعلم العمیق لتصنیف أنواع خلایا الدم الرئیسیة بدقة، وتحدیداً  الأھداف:  

 .الخلایا القاعدیة، والخلایا الأرومیة الحمراء، والخلایا الأرومیة النقویة، لتعزیز دقة وكفاءة التشخیص في الإعدادات السریریة
، مع تطبیق معالجة مسبقة موحدة publicly ة  قمنا بتحلیل مجموعة فرعیة مختارة من صور مسحات الدم عالیة الدقة المتاح  المرضى والطرق:

وعة لمعالجة مشكلة التباین. تم تطویر واستعراض استراتیجیات تصنیف متعددة مدعومة بالذكاء الاصطناعي، حیث تم تقییم جمیع النماذج على مجم
 . F1ة اختبار مستقلة باستخدام مقاییس الدقة الشاملة، والدقة، والاستدعاء، ودرج

أقوى أداءً إجمالي، متجاوزة أداء  (SVM) المقرونة بآلة المتجھات الداعمة (Wavelet Scattering) "أظھرت تقنیة "تبعثر الموجھاتالنتائج:  
حیث حققت ھذه الطریقة فصلاً شبھ كامل للخلایا القاعدیة والخلایا الأرومیة  .ResNet المخصصة والنماذج المشتقة من CNN كل من شبكة

الدقیقة في  الحمراء، واقتصر ارتباكھا النادر على الخلایا الأرومیة النقویة. تؤكد ھذه النتائج على حساسیة طریقة تبعثر الموجھات للفروق الشكلیة
 .خلایا الدم
تسلط ھذه الدراسة الضوء على كیفیة قدرة تقنیات تحلیل الصور القائمة على التعلم الآلي على تصنیف خلایا الدم بشكل موثوق ودقیق،   :الاستنتاج

ط خطط مما یقلل من الاعتماد على التفسیر الیدوي الذاتي الذي یمیز الفحص المجھري التقلیدي. یوجد إمكانیة لزیادة دقة التشخیص المبكر وتبسی
 .المرضى الذین یعانون من اضطرابات دمویة من خلال دمج ھذه الأنظمة الآلیة في الممارسة السریریة القیاسیة علاج

 .التشخیص الدموي، تصنیف خلایا الدم، تحویل تبعثر الموجھات، التعلم بالانتقالالكلمات المفتاحیة: 
 احمد سعید لطیفالمؤلف المراسل: 

     a97s21@uomustansiriyah.edu.iq  :الایمیل
 ۲۰۲٥    أیار               ۱۰   تاریخ الاستلام:

   ۲۰۲٥           ایلول      ۱٦     تاریخ القبول:
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