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Abstract

Background: Accurate blood cell classification is essential for diagnosing and
monitoring blood disorders. Manual blood evaluation is cumbersome and
subject to disagreement among specialists, which can negatively impact
diagnostic reliability.

Objectives: This study aims to develop an automated deep learning
framework for accurate classification of major blood cell types, especially
basophils, red blood cells, and bone marrow cells, to enhance the accuracy and
efficiency of clinical diagnosis.

Patients and Methods: A set of publicly available, high-resolution blood
smear images obtained from a specific patient cohort with distinct genetic
properties was analyzed, with standardized preprocessing applied to address
variance. Multiple Al-based classification strategies were developed, and all
models were evaluated on an independent test set using overall accuracy,
precision, recall, and F1 score.

Results: Wavelet scattering combined with an SVM delivered the strongest
overall performance, surpassing both the custom CNN and ResNet variants. It
achieved a near-perfect separation of basophils and erythroblasts and only
occasional confusion with myeloblasts. These results highlight the sensitivity
of the wavelet scattering method to subtle morphological differences in blood
cells.

Conclusion: This study highlights how machine learning-based image
analysis techniques can reliably and accurately classify blood cells, reducing
the need for the subjective manual interpretation that characterizes traditional
microscopy. There is potential for increasing the accuracy of early diagnosis
and simplifying patient treatment plans for hematological disorders by
integrating these automated systems into standard clinical practice.
Keywords: Hematological Diagnostics, Blood Cell Classification,
Wavelet Scattering Transform, Transfer Learning.

The diagnosis and treatment of blood disorders, such as leukemia and bone marrow dysplasia, rely on
blood cell classification; however, traditional microscopic examination remains time-consuming and
subject to interdisciplinary variation. Advanced artificial intelligence and image processing

techniques can overcome these limitations by providing objective and reproducible analyses of

cellular characteristics, enabling early detection of subtle morphological changes, and helping guide

individual treatment decisions. To demonstrate better outcomes, accuracy and consistency than
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traditional microscopy, we create and validate an
Al-driven framework in this study for the
automated  classification = of  basophils,
erythroblasts, and myeloblasts in high-resolution
blood smear images (1-3).

Deep learning frameworks and sophisticated
computational techniques have emerged as
potent remedies for these problems in recent
years (4). For various tasks in biomedical image
analysis, CNNs, transfer learning frameworks,
and autoencoder-based cascades have been
widely utilized (5-8). These methodologies have
achieved high precision in recognizing the
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populations of various leukocytes, providing
more objective and reproducible alternatives to
manual methods. Even with these advances, the
classification of basophils, erythroblasts, and
myeloblasts remains challenging because their
histological features are very delicate, as there are
no comprehensive, properly cataloged data sets
(9-16). Consequently, a successful computerized
classification scheme significantly
enhance diagnostic precision, ultimately leading
to earlier diagnosis and more targeted therapies
(17-20).

This work primarily aims to address this
shortcoming by developing and validating a
custom-designed deep learning algorithm for
classifying  basophils, erythroblasts, and
myeloblasts from microscopic images. By
embracing the latest 1image processing
methodologies and advanced neural network
designs, the strategy
subjectivity in morphological evaluation and
enhance consistency during cell classification. In
the process, we confront the specific challenges
related to these cells while building upon the
promising results from the most recent studies.
Following this introductory section, the paper
proceeds as outlined below.

First, a comprehensive review of related work is
provided, summarizing current methodologies
and their inherent limitations. Next, the proposed

would

aims to minimize
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methodology, including the network design and
data augmentation strategies employed to address
data scarcity and morphological overlap, is
described in detail. Finally, present
experimental  results that validate the
effectiveness of our approach and discuss the
potential implications for clinical hematological
diagnostics
Arabyarmohammadi ef al. (2022) trained a deep
model to segment myeloblast chromatin and
extracted 214 texture/shape features. After
LASSO and Cox regression refinement, their risk
score correlated with relapse-free survival (AUC
0.71) in AML and MDS post-transplant patients,
demonstrating a reproducible alternative to
manual cytology (21). In addition, Guo et al.
(2022) developed a deep classifier with a
“rejected option” to flag ambiguous bone marrow
images. By
morphological features, the system abstains from
uncertain cases, reducing misclassification and
directing them to expert review (22). Jarjees et al.
(2022) developed a VGG-19 transfer-learning
pipeline using an augmented dataset comprising
seven blood cell classes. Their CNN achieved 98
% overall accuracy, standardizing leukocyte
classification and minimizing dependence on
expert interpretation (23).Tarquino et al. (2023)
introduced a cascade of one-class variational
autoencoders to distinguish four pathological
bone marrow subtypes. Trained on 26,000 open-
access 1mages, the model achieved 93.8%
accuracy, outperforming benchmarks for
ResNext, ResNet-50, Xception, and CoAtNet
(24). Consensus criteria for acute and chronic
basophilic leukemias were established, defining
“hyperbasophilia” (>1,000 basophils/uL) and
standardizing diagnoses to enhance clinical
reproducibility across hematologic malignancies
(25). A CNN with specialized layers and data
augmentation was designed to detect AML in
high-resolution images. The system delivered
high accuracy and reliability, demonstrating

w¢E

and future research directions.

quantitatively measuring
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versatility for other overlapping cell types and
accelerating diagnostic workflows (26).

Patients and Methods

Dataset description: A portion of a publicly
available Kaggle dataset was utilized in this
study. The dataset comprises 5,000 high-
resolution microscopic blood cell images evenly
distributed across five classes (1,000 images per
class) from different countries. Each image
meets the following technical specifications:

. .

(a)

(b)
8
; b

(c)

minimum resolution of 1024x1024 pixels,
Wright-Giemsa staining, acquisition at
100x oil immersion (equivalent to 1000x
total magnification), 24-bit RGB color,
and multiple focal planes per sample.
Given the computational demands
associated with training Al algorithms on
such high-resolution data, only a subset of
the dataset was employed for training,
specifically, three classes with 100 images
per class. A portion of the dataset is
depicted in Figure 1.

d

0
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Figure 1. Samples of the dataset: (a) Basophil cells; (b) Erythroblast; and (c) Myeloblast.

Data preparation: The study employed a
publicly available dataset of blood smear
images. The original dataset was provided as
a compressed archive (e.g.,
BloodSmearImages.zip) and was extracted to
a designated working directory. The images
are in RGB format with a common size of
1024x1024 pixels, which leads to resizing
the images to 400x400 pixels. To facilitate
data management and ensure proper labeling,
an Image Datastore was created; labels were
automatically assigned based on the folder

names. The dataset comprises 100 images
uniformly  distributed across three classes
corresponding to specific parasitic infections
(basophil, erythroblast, and myeloblast), with 100
images per class.

To ensure balanced class representation, the dataset
was split into training and hold-out (test) sets using a
70:30 ratio. Randomization was controlled via a
fixed random seed to guarantee reproducibility. The
entire set of training and test images was loaded into
memory, which permitted rapid access during
feature extraction and classifier training.
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Feature extraction using wavelet scattering
technique: Accurate feature extraction is
crucial due to the dataset's small size and
diversity. To address this challenge, a two-
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layer wavelet dispersion transform was
applied to extract low-contrast, translation-
invariant feature descriptors from high-
resolution images. The network was designed
to accommodate input images of 400 x 400
pixels, with a 40-pixel invariance scale
selected to ensure robustness against subtle
translational shifts and shape distortions. Two
wavelets per octave were used in the first
dispersion layer to capture fine details. In
contrast, per
employed in the second layer to downscale the
resolution hierarchically. To enable the model
to adapt to angular variations in cellular
structures, two rotational transforms were
incorporated into each dispersion layer to
account for orientation diversity. The outcome
of these stages is a robust set of dispersion
parameters, including successive wavelet
convolutions, nonlinear parameter
transformations, and local averaging via low-
pass filtering. These parameters serve as high-
level discriminative representations that
enhance the model's ability to distinguish
between normal and pathological cell types,
even in images exhibiting subtle variations
that complicate discrimination.
Classification wusing support
machine (SVM):  Following
extraction, the scattering coefficients were
used as inputs to a Support Vector Machine
(SVM) classifier. Recognized for their
effectiveness in high-dimensional spaces and
limited-sample scenarios, SVMs were chosen
to robustly discriminate among the classes. In
our implementation, a multiclass SVM was
constructed using the one-vs-all strategy (or
error-correcting output codes) to generalize
the binary decision-making process inherent

one wavelet octave was

vector
feature
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in SVMs to a multiclass classification problem.
Hyperparameters for the SVM, including the choice
of kernel (e.g., linear or radial basis function),
regularization parameters, and other
parameters, were optimized using cross-validation
on the training set. This approach ensured that the
classifier maintained high generalizability and
minimized the risk of overfitting. The classifier’s
performance was subsequently assessed on the
reserved test set using standard metrics, including
accuracy, precision, recall, and Fl-score. Table 1
shows the hyperparameters of the SVM algorithm.

tuning

Table 1. Properties of the Wavelet feature extraction method.

Parameter value
KernelFunction | cubic polynomial kernel
PolynomialOrder 3
KernelScale 1
BoxConstraint 314
Standardize True
KFold 5

Deep convolutional neural network: The results of
the Water sorption of the zirconium mixed with PVA
decreased in the study group compared to the control
group, as shown in Table 2. It was demonstrated that
water sorption results show

a significant difference in the study group at all
curing times (1-2-5-10-15-20 sec), while showing a
non-significant difference in the control group at all
curing time intervals.

Deep convolutional neural network: The custom
Convolutional Deep Network is engineered to learn
discriminative features directly from input images by
employing a structured architecture that begins with
an input layer where images are resized to a fixed
resolution (e.g., 300x300 pixels) and accepted in 24-
bit RGB format. The network then utilizes a series of
convolutional blocks for feature extraction; each
block typically comprises a convolutional layer with
small receptive fields (such as 3x3 filters) to scan the
input feature maps, followed by batch normalization
layers to stabilize and accelerate training, ReLU

62 October 2025, Volume 29, Issue 1


https://djm.uodiyala.edu.iq/index.php/djm/article/view/1463/version/1436

saDIM

activation functions to introduce non-linearity,
and max pooling layers to down sample the
feature maps- thereby reducing spatial
dimensions and capturing translational
invariance. After several such blocks, a global
average pooling layer aggregates these high-
level features, summarizing the learned spatial
representations into a fixed-length feature
vector. This vector is further processed
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through one or two fully connected dense layers that
incorporate dropout to prevent overfitting, given the
high capacity of the network relative to the dataset
size. Finally, the architecture culminates in a fully
connected SoftMax output layer, which maps the
refined features to class probabilities corresponding
to the various blood cell categories.

Table 2. Architecture of the custom deep CNN.

Layer (type) Output Shape Number of parameters
conv2d 4 (Conv2D) (None, 400, 400, 16) 2368
batch normalization 4 (None, 400, 400, 16) 64
re lu 4 (ReLU) (None, 400, 400, 16) 0
conv2d 5 (Conv2D) (None, 400, 400, 20) 2900
batch normalization 5 (Batch) (None, 400, 400, 20) 80
re Iu 5 (ReLU) (None, 400, 400, 20) 0
max_pooling2d 2 (MaxPooling2) | (None, 100, 100, 20) 0
flatten 2 (Flatten) (None, 200000) 0
dense 2 (Dense) (None, 3) 600003
softmax 2 (Softmax) (None, 3) 0
Total params: 605415, Trainable params: 605343, Non-trainable params: 72

The network was trained using stochastic
gradient descent (or an alternative optimizer
such as Adam) with appropriate learning rate
scheduling and weight regularization (e.g., L2
weight decay). Hyperparameters, including
mini-batch size, learning rate, dropout ratio,
and number of epochs, were empirically set,
followed by cross-validation to ensure robust
performance and mitigate overfitting. Data
augmentation techniques (e.g., rotation,
scaling, or flipping) were applied during
training to expand the effective dataset and
further enhance the model’s generalization.

ResNet network: ResNet, or Residual
Network, is a highly effective deep learning
model known for its ability to train very deep
neural networks by addressing the vanishing
gradient problem through skip connections. In
our work, we used a pretrained version of
ResNet, specifically ResNet-50, because of its
strong performance in image classification

tasks. The core idea behind ResNet lies in its residual
blocks, which include shortcut connections (also
called identity mappings) that skip over one or more
layers. These connections allow the network to learn
residual functions relative to the input, making it
easier to train deeper models by reducing the
degradation problem.

Stacking multiple residual blocks can enable the
network to obtain high-level representations from
low-level textures progressively. This functionality
is very effective for recognizing faint blood cell
morphology cues. Transfer learning was used to
allow the pretrained ResNet model to learn blood cell
classification. It allowed us to leverage strong
feature representations learned on the vast ImageNet
dataset. Early layers of the network extract general
visual features that are widely applicable, so we left
most of them unchanged.

For a certain number of classes in the dataset, we
replaced the classification layer with a different fully
connected softmax layer, and we then adjusted the
learning rate. By doing this, it was able to stay close
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to the original and preserve only limited, yet
significant, modifications introduced by the
model's retraining for the particular domain.
To enhance the model's resilience and
generalization capabilities, we also employed
regularization and data  augmentation
techniques. This led to the development of a
precise  blood type

Diyala Journal of Medicine

functional  and
classification system.
Evaluation: To conduct a comprehensive
performance comparison of the methods
adopted in this study, we ran each technique
on a hold-out test dataset comprising 30% of
the entire dataset. To evaluate the developed
model, we used accuracy, precision, recall,
We
computed each metric for each class and then
averaged it with the macro average across all
classes to obtain an overall assessment of the
model's performance across all classes.

For reference:

and Fl-score classification metrics.

¢ True Positives (TP): The number of samples
correctly predicted as belonging to a given
class.

e False Positives (FP): The number of samples
incorrectly predicted to belong to the class.

e True Negatives (TN): The number of
samples correctly identified as not belonging
to the class.

e False Negatives (FN): The number of
samples that were actually in the class but
were misclassified as something else.

The evaluation metrics were computed using
the following equations:

- Accuracy measures the proportion of all

correct predictions (24):
TP + TN

TP + TN + FP + FN

Accuracy =

- Precision (P) quantifies the correctness of
positive predictions for a class (27):
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b TP
" TP + FP

- Recall (R) measures the ability of the model to
capture all actual positive instances (27):
TP

R=———
TP + FN

- F1-Score is the harmonic mean of precision and
recall, providing a balanced measure (27):
P xR

Fl1=2x%
P+R

A confusion matrix was constructed during the
qualitative analysis to assess the performance of the
models in each category, which helps identify
patterns of misclassification and highlights areas that
require improvement in each model.

Results

Study design:

Both models were implemented in MATLAB. The
custom network was constructed using the deep
learning primitives available in the MATLAB Deep
Learning Toolbox, while the pretrained ResNet
model was adapted using MATLAB’s transfer
learning capabilities. The environment facilitated
rapid prototyping, hyperparameter exploration, and
performance evaluation using standard metrics such
as accuracy, precision, recall, and F1-score.
Classification via wavelet scattering features
using SVM: Figure 2 shows the confusion matrix
obtained from the wavelet scattering feature
extraction and SVM classification approach, which
overall high performance in
discriminating blood cell types. For the three classes
under investigation- basophils, erythroblasts, and
myeloblasts- the classifier achieved near-perfect
accuracy. Specifically, both basophils and
erythroblasts were classified with 100% accuracy,

reveals an

indicating that the scattering coefficients extracted
from these cell images capture their distinctive
morphological very effectively.
Myeloblasts, while also largely well-classified with

features

64 October 2025, Volume 29, Issue 1


https://djm.uodiyala.edu.iq/index.php/djm/article/view/1463/version/1436

sasDIM

Diyala Journal of Medicine

ORIGINAL RESEARCH
Published: 25 October 2025
DOT: 10.26505/djm.v29i1.1463

29 out of 30 instances correctly identified,
exhibited a  single  misclassification
(incorrectly labeled as an erythroblast),

resulting in a slight reduction in metrics such as
recall and F1-score for this class.

Confusion Chart for Wavelet
Scattering Features using SVM

basophil 0

erythroblast

myeloblast

True Class

Figure 2. Confusion chart of Wavelet features using SVM.

The excellent performance for basophils and
erythroblasts suggests that the wavelet
scattering transform is successful in deriving
translation-invariant and  discriminative
features that robustly represent the
morphological characteristics of these cells.
The overlap observed between
myeloblasts and erythroblasts,

implies that in certain cases, the feature space

minor
however,

representations of these two cell types may
become similar. Such subtle overlaps are not
entirely unexpected, given the inherent
complexity in distinguishing cells that share
comparable structural and textural attributes.
The SVM classifier, when provided with these
high-quality features, demonstrates effective
discrimination across classes. Its decision
boundaries appear to be well-calibrated, as
evidenced by the high class-wise accuracies.
However, the misclassification of one
myeloblast highlights a potential area for

further refinement. Future work could explore more
sophisticated feature fusion techniques that integrate
additional descriptors (e.g., color histograms or
morphological measurements) into the classification
pipeline, or consider threshold adjustments and
ensemble learning methods to more reliably resolve
borderline cases.

Classification via deep CNN: The training of the
deep CNN model was characterized by steady
improvements in both accuracy and loss over
successive epochs, as illustrated in Figure 3. Initially,
the model achieved around 60% accuracy, and
within several epochs, it rapidly improved,
eventually stabilizing between 90% and 100%.
Concurrently, the training loss started from a high
value (approximately 9) and consistently decreased
toward near-zero levels, reflecting effective
optimization of network weights and a substantial
reduction in the difference between predicted outputs
and true labels.
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Figure 3. Training process of the deep CNN.

The network was trained for a total of 100
epochs, encompassing approximately 2100
iterations. A constant learning rate of 0.0001
was chosen, which contributed to the stable
convergence observed, as it ensured gradual
weight adjustments without causing erratic
behavior in the loss or accuracy metrics.
Notably, the training was executed on a single
CPU, which may indicate either the modest
scale of the dataset or a scenario where high-
end GPUs were not available. Despite these
hardware constraints, the learning curves
demonstrate that the model was able to
effectively capture the morphological nuances
in the blood cell images.

While minor fluctuations in training accuracy
are common in mini-batch gradient descent
due to inherent stochasticity, the overall
upward trend in accuracy and the
corresponding decline in loss confirm the
model’s ability to learn relevant features. The
training process was allowed to complete all
100 epochs, reaching a point of convergence
where the loss stabilized and the accuracy
plateaued, without the implementation of
early stopping mechanisms.

The confusion matrix for the deep CNN model
near-perfect classification performance
overall, with 100% accuracy for both basophils and
myeloblasts. In comparison, erythroblasts show a
slightly lower accuracy of 86.7% (26 out of 30
correctly classified, with 4 misclassified as
basophils), as illustrated by Figure 4. When
normalized by true class, basophils and myeloblasts
maintain perfect recognition. In contrast, the row-
wise accuracy for erythroblasts indicates that a small
subset is misinterpreted, likely due to subtle
morphological similarities to basophils, despite their
distinctive features. Analysis
normalization shows that approximately 88.2% of
samples predicted as basophils are indeed basophils,
with the remainder being erythroblasts, underscoring
a slight overlap in the feature space between these
two classes. These observations suggest that while
the deep CNN effectively distinguishes the majority
of blood cell types, there remains an opportunity for
further refinement, potentially through enhanced
feature engineering, increased data augmentation, or
additional model tuning to differentiate erythroblasts
from basophils better and improve the overall
robustness of the classifier in clinical diagnostics.

reveals

of column-wise
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Confusion Chart for Deep CNN

basophil 0

erythroblast 4

myeloblast

True Class

Figure 4. Confusion chart of the deep CNN.

Classification via transfer learning using
ResNet: The training process of the ResNet
model was both robust and efficient, as
demonstrated by the steady evolution of key
performance metrics over 2100 iterations and
100 epochs, as shown in Figure 5. Initially, the
training accuracy rapidly increased from a
moderate value, quickly approaching and then
maintaining near 100% accuracy, indicating
that the network’s residual connections were
highly effective in facilitating deep feature
extraction and mitigating the vanishing
gradient problem. Concurrently, the training
loss decreased sharply from an initial high
value and plateaued at very low levels, with
only minor fluctuations that are typical in
mini-batch optimization. This convergence
was achieved using a constant learning rate of
0.0001, ensuring gradual yet consistent weight
updates that contributed to the model’s stable
performance over time. Notably, the entire
training process was executed on a single
CPU, suggesting an efficient use of
computational  resources  despite  the
complexity of the ResNet architecture.
Overall, the training results indicate that the

The ResNet model successfully learned the
underlying patterns in the data, as reflected in its high
accuracy and low loss by the end of training, thereby
affirming its potential for effective generalization to
unseen samples.

Figure 6 displays the confusion matrix for the
ResNet model, indicating a high Ilevel of
classification accuracy across the three blood cell
categories. Specifically, basophils and myeloblasts
are classified with 100% accuracy, while
erythroblasts achieve a slightly lower accuracy of
90%, with 3 out of 30 instances misclassified as
basophils. This pattern suggests that although the
deep architecture of ResNet effectively captures the
discriminative features necessary for accurate
classification, there exists a subtle overlap between
the feature representations of erythroblasts and
basophils. Such overlaps may be due to inherent
morphological similarities in the texture or structure
of the cells. Overall, these results attest to the
robustness of the transfer learning approach using
ResNet while also highlighting an opportunity for
further refinement in distinguishing closely related
cell types.
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Figure 6. Confusion chart of the ResNet method.

Clinical integration and validation: To
transition from a research prototype to a
routine diagnostic tool, our Al framework
must be embedded seamlessly within existing
digital pathology infrastructures. In a typical
laboratory workflow, blood smear slides
scanned by high-throughput slide scanners
will be automatically conveyed to the Al
engine through the Laboratory Information
System (LIS). The
predictions-including confidence scores-will
be overlaid on the digital-pathology viewer,
enabling pathologists to visualize Al
annotations  alongside  their
assessments. This integration minimizes

model’s cell-type

manual

additional workflow steps and ensures that Al
outputs augment, rather than disrupt, established
diagnostic practices.

Effective adoption also hinges on user training and
feedback mechanisms. Laboratory staff will
participate in structured workshops and e-learning
modules to learn how to interpret Al annotations,
manage low-confidence or “rejected” outputs, and
reconcile discrepancies between model predictions
and expert opinions. Regular feedback sessions will
capture user experiences and inform iterative
refinements of both the AI model and the user
interface, ensuring that the system evolves in
alignment with clinical needs.

Finally, safeguarding patient data and ensuring long-
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term performance stability is paramount. All
image transfers will adhere to HIPAA and
GDPR standards, employing end-to-end
encryption and de-identification protocols.
Post-deployment, a continuous monitoring
framework will track metrics such as false-
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positive and false-negative rates, model drift,
and override frequencies. These indicators
will trigger scheduled retraining with newly
annotated cases, guaranteeing that the Al
system maintains its accuracy and reliability
over time.

Discussion

Our findings demonstrate that all three
approaches-wavelet scattering with SVM,
custom deep CNN, and ResNet transfer
learning-achieved strong performance in
distinguishing between basophils,
erythroblasts, and myeloblasts.
important performance differences emerged
among the methods. The wavelet scattering
with the SVM approach achieved the highest
overall accuracy (~98.9%), with perfect
classification of basophils and erythroblasts
and only a single misclassification among
myeloblasts. The deep CNN achieved 95.6%
accuracy, with slightly
performance for erythroblasts (86.7%), while
the ResNet model performed between the two
methods, reaching 96.7% accuracy with 90%
correct classification of erythroblasts. These
differences highlight that while deep learning
architectures are effective, handcrafted feature
extraction using wavelet scattering remains
highly competitive in scenarios with limited
datasets.

However,

overall reduced

Comparing these results with prior studies
underscores their significance. Jarjees et al.
(23) reported 98% accuracy using a VGG-19
transfer learning pipeline for leukocyte
classification, which is comparable to our
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ResNet model but slightly lower than the wavelet
scattering + SVM approach. Similarly, Khanam et al.
(26) demonstrated high performance of CNNs in
acute myeloid leukemia detection, yet their work
also noted challenges in separating morphologically
similar cell types-a limitation mirrored in our
misclassifications between erythroblasts and
basophils. Tarquino et al. (24) achieved 93.8%
accuracy with a variational autoencoder cascade for
bone marrow cell classification, which is lower than
all three methods in our study. This indicates that
both conventional machine learning (wavelet
scattering + SVM) and transfer learning approaches
are advantageous for small, specialized datasets.

Other investigations have also confirmed the
challenge of differentiating morphologically
overlapping cells. Arabyarmohammadi et al. (21)
utilized texture-based deep models to stratify
myeloblasts in AML and MDS, reporting strong
prognostic accuracy while also highlighting issues
with feature overlap. Likewise, Guo et al. (22)
proposed a rejection-based classifier for bone
marrow cells to handle ambiguous cases, which
aligns with our observation that a small subset of
erythroblasts was misclassified as basophils.

Our results, therefore, support the notion that robust,
handcrafted descriptors, such as wavelet scattering
coefficients, outperform deep CNNs and even
transfer learning models when dataset size is
constrained, as they capture subtle morphological
patterns without requiring massive annotated
datasets (28). At the same time, the promising results
of ResNet (96.7% accuracy) suggest that deep
hierarchical feature extraction can achieve reliable
performance and may surpass handcrafted features
when larger datasets and additional augmentation
strategies are available.

Taken together, this study contributes to the growing
evidence that Al-driven image analysis can enhance
hematological diagnostics by providing high
accuracy and reducing inter-observer variability.
While some misclassifications remain, particularly
between erythroblasts and basophils, our
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comparative analysis shows that integrating
wavelet-based descriptors with traditional
classifiers remains a viable and powerful
approach. Future work should investigate
hybrid feature fusion strategies, as well as
enriched datasets, to further improve
erythroblast recognition and achieve robust,

Diyala Journal of Medicine

clinically deployable diagnostic support
systems.

Conclusion

Our findings demonstrate that Al can

effectively automate blood cell classification,
reducing the subjectivity of manual
microscopy. All three models-wavelet
scattering with SVM, a custom CNN, and
ResNet-achieved high accuracy (>95%), with
the wavelet-SVM combination performing
best (~98.9%). However, a limitation of this
study is the genetic properties of our dataset,
which differs from others and may impact
model generalizability. Future research should
expand datasets and incorporate genetic
variability to strengthen clinical applicability.
Despite this, our work confirms that Al-driven
frameworks are promising tools for enhancing
hematological diagnostics
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